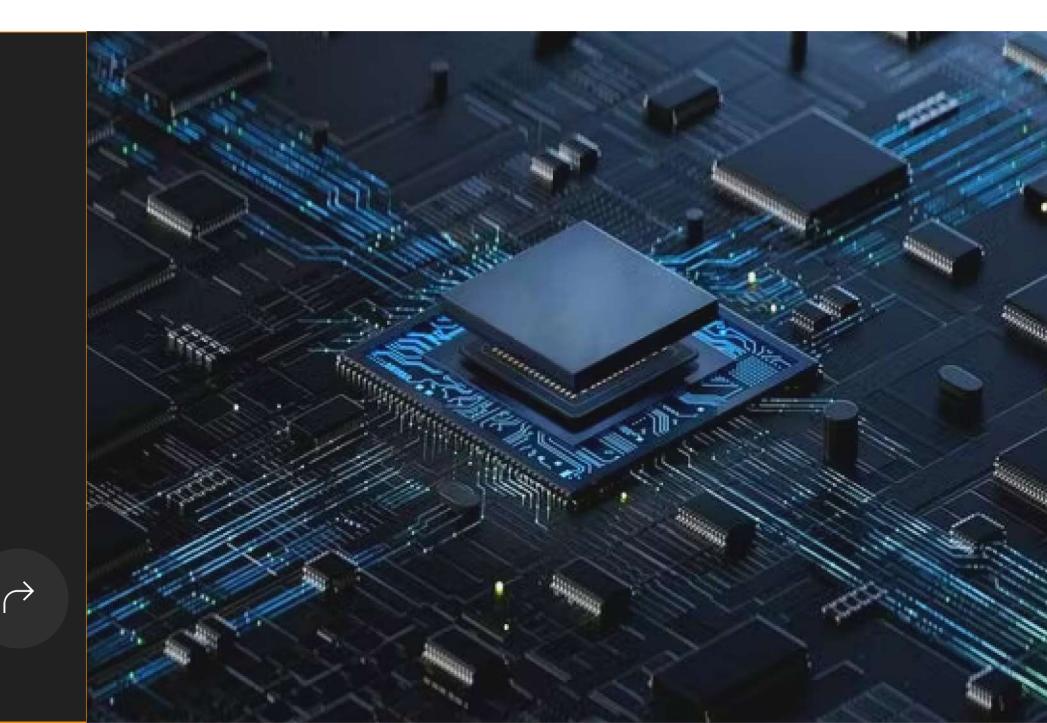
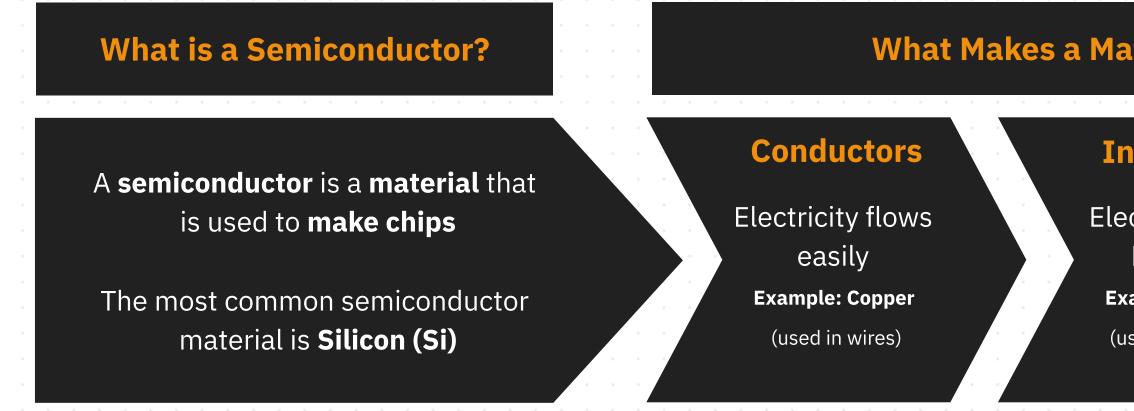
Chips & Capital: The Investment Landscape of Indian Semiconductors


BRC BYTES

basic roots consulting

MAKING BUSINESSES BETTER


MAR 2025

Why Semiconductors Matter?

Imagine waking up one day and your phone, laptop, or even your car stops working! This is what happens if semiconductors disappear

Without semiconductors, no electronic device would function!

As the name suggests : Semi = Not Always | Conductor = Allows Eletricity to Pass So, a semiconductor is a material that can act like a conductor (allowing electricity) when needed and like an insulator (blocking electricity) when not needed

What Makes a Material "Semiconductor"

Insulators

Electricity does NOT flow Example: Rubber

(used in coatings)

Semiconductors

Can conduct electricity in some situations but block it in others

Example: Silicon, Germanium

Decoding Semiconductors: The Brains Behind Modern Tech

Addressing fundamental questions about Semiconductors

What materials are semiconductors made of?

What do semiconductors have to do with computers?

What is Moore's Law and how does it relate to semiconductors?

Some elements are semiconductors by themselves, or they can be mixed with another element to become semiconductors

Semiconductors are classified into elemental (e.g., silicon, diamond) and compound (e.g., gallium nitride, gallium arsenide, silicon carbide) types, depending on their composition

Everything. No computer can function without the semiconductor (device) in it

Computers process and store data as binary digits (Os and **1s)**, represented by **voltages**. These voltages are controlled by transistors and diodes, which are built using semiconductors.

Moore's Law is an observation (not a law!) that states the number of transistors (made of semiconductors) **on a chip** doubles every two years, increasing **computing power**.

Moore's Law is nearing its limit as shrinking transistors further becomes increasingly difficult

Fun Perspective: If semiconductor engineers had slowed down, Moore's Law might not have come true—but the industry's relentless pursuit of efficiency made it a selffulfilling prophecy

Why have there been concerns about semiconductor shortage?

A shortage occurs when **supply** falls short of demand. Rapid growth in AI, EVs, 5G, and consumer electronics outpaced semiconductor production.

Efforts like onshoring fabs building semiconductor manufacturing plants within national borders (US CHIPS Act, India's Semicon Program) aim to reduce future shortages.

Semiconductor Manufacturing Process

Outlined below are key steps in chip making using Apple as an example

01 Silicon Wafer Production

(Turning Sand into Silicon Wafers)

Pure silicon extracted from sand & shaped into ultra-thin wafers

Apple's A17 chip uses 3nm wafers from TSMC for high efficiency

O2 Deposition

(Laying the Atomic Foundations)

Thin layers of materials (silicon dioxide, metals) are added

This forms the base for transistors and circuits

03 Photolithography

(Printing Trillions of Transistors)

EUV Lithography projects Apple's chip design onto the wafer

Uses ultraviolet light to achieve nanometer-scale precision

04 Etching

(Carving the Circuit Pathways)

Removes unwanted material, leaving microscopic pathways for electrons

Essential for Apple's high-speed chip performance

05 Ion Implantation

(Supercharging Transistors with Ions)

Boron & phosphorus ions are embedded to create electrical properties

This ensures efficient power & performance balance

06 Annealing

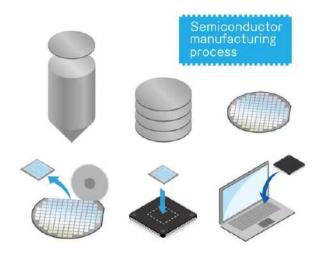
(Baking the Chip to Perfection)

Wafers are heated to fix crystal defects, improving chip efficiency

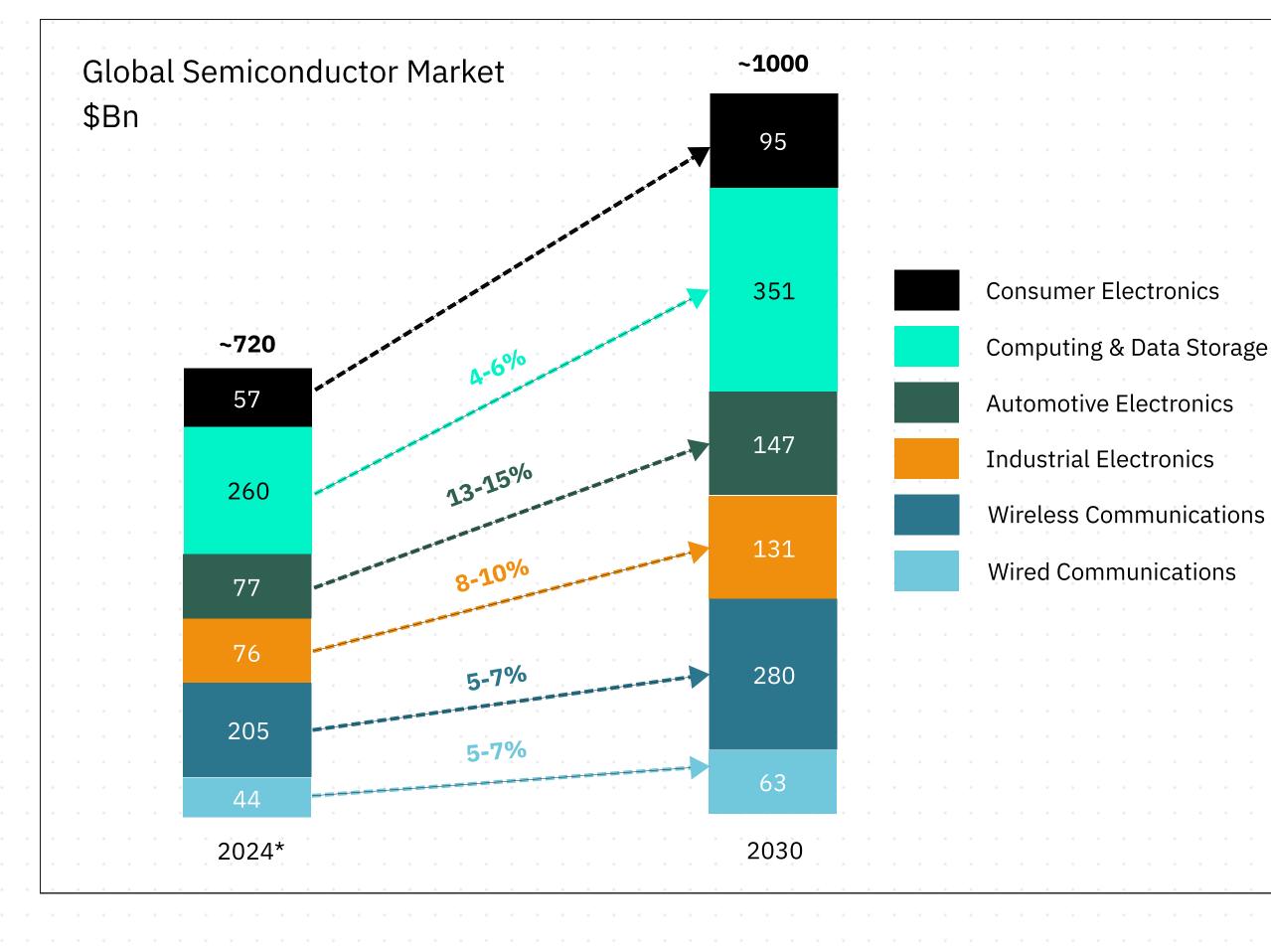
Critical for Apple's power-efficient chip design

07	Layering & Metallization
	(Building the Neural Pathways)

Multiple layers of circuits are stacked & connected using copper interconnects


Enables the seamless data flow in Apple's processors

08 Testing & Packaging

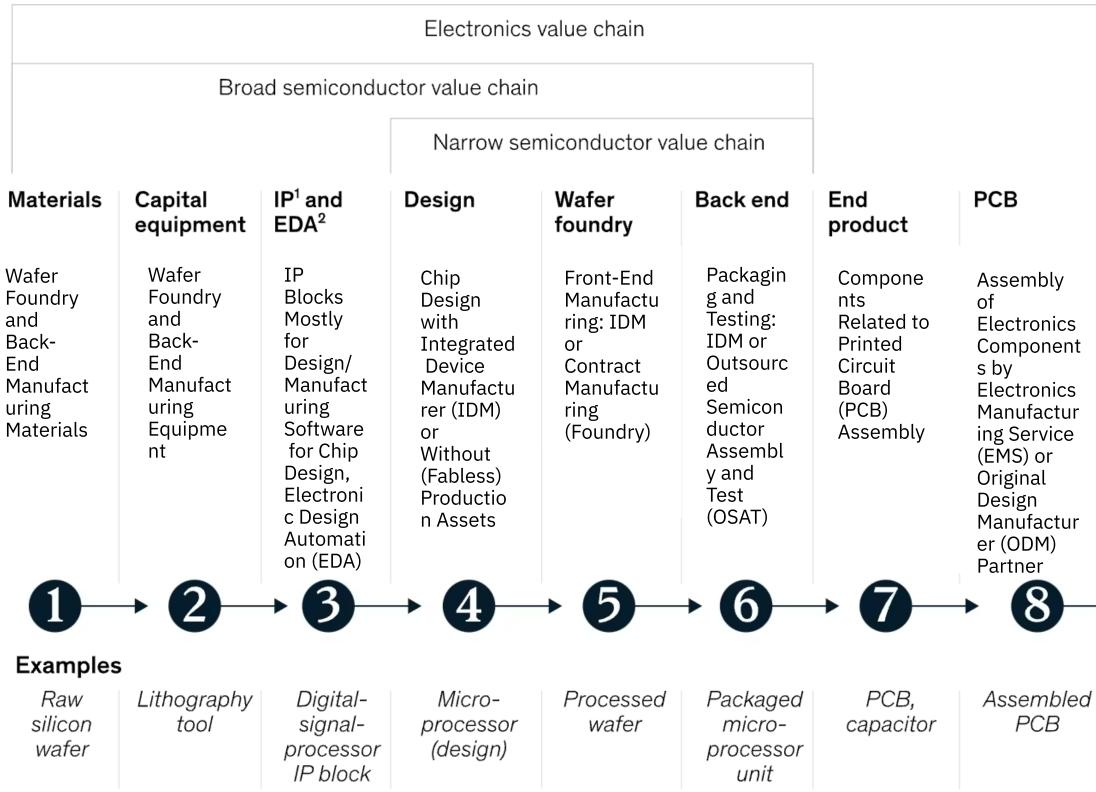

(Only the Best Make the Cut)

Chips undergo rigorous testing, with defective ones discarded

Final chips are packaged & ready for iPhones, iPads, and Macs

The **Global Semiconductor Market** is set to hit \$1Tn by 2030

Insights


The global semiconductor market will add \sim \$280Bn in just six years (2024 \rightarrow 2030)

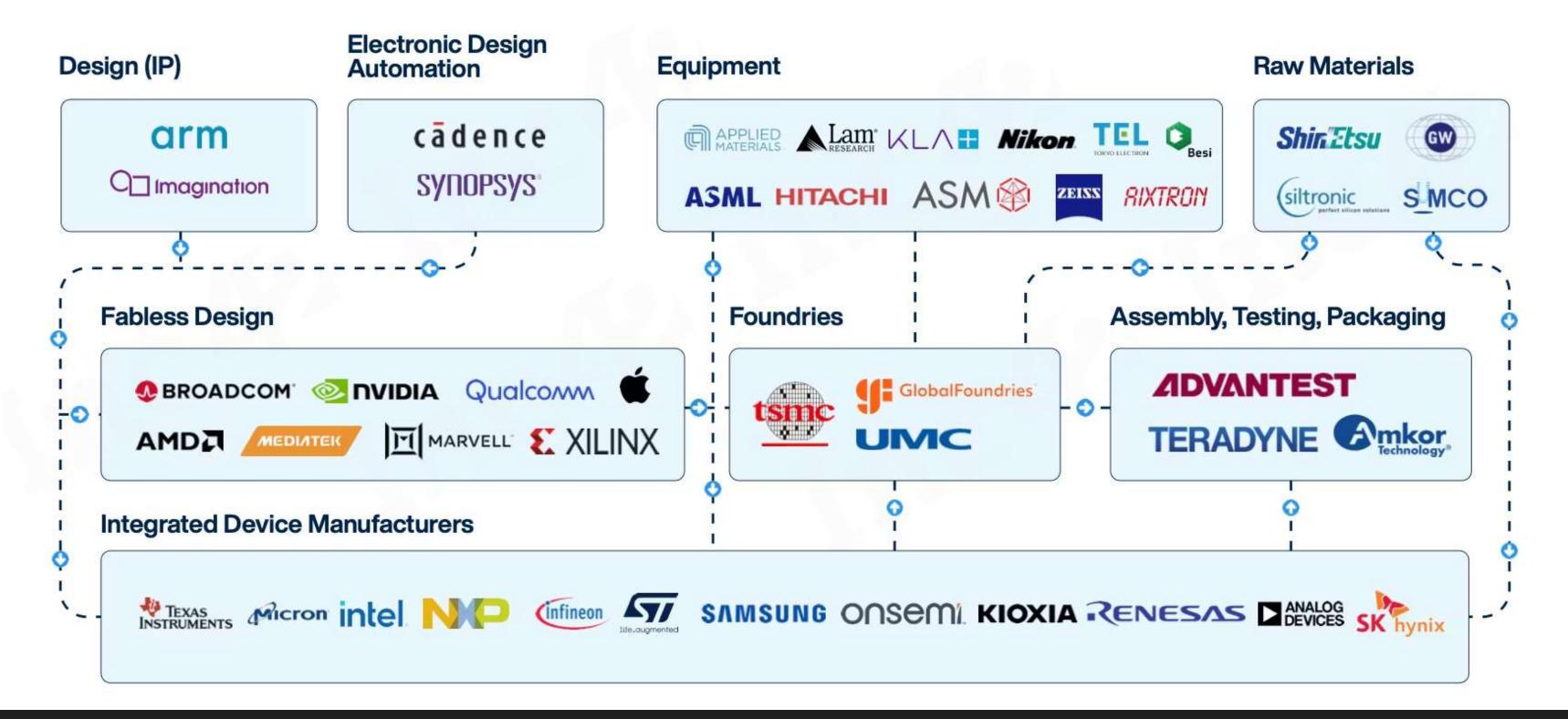
Fastest-Growing Segment: Automotive Electronics Nearly doubles in six years, driven by:

 EV & Hybrid Vehicles: More chips per car (power management, battery systems)
 ADAS & Autonomous Tech: Higher demand for processing power & AI chips

ADAS - Advanced Driver-Assistance Systems

Semiconductor Value Chain

¹Intellectual property. ²Electronic-design automation.


End product End-Product Developme nt, Assembly. Sale by Original Equipment Manufactur ers (OEM) or **Suppliers** per Application 9

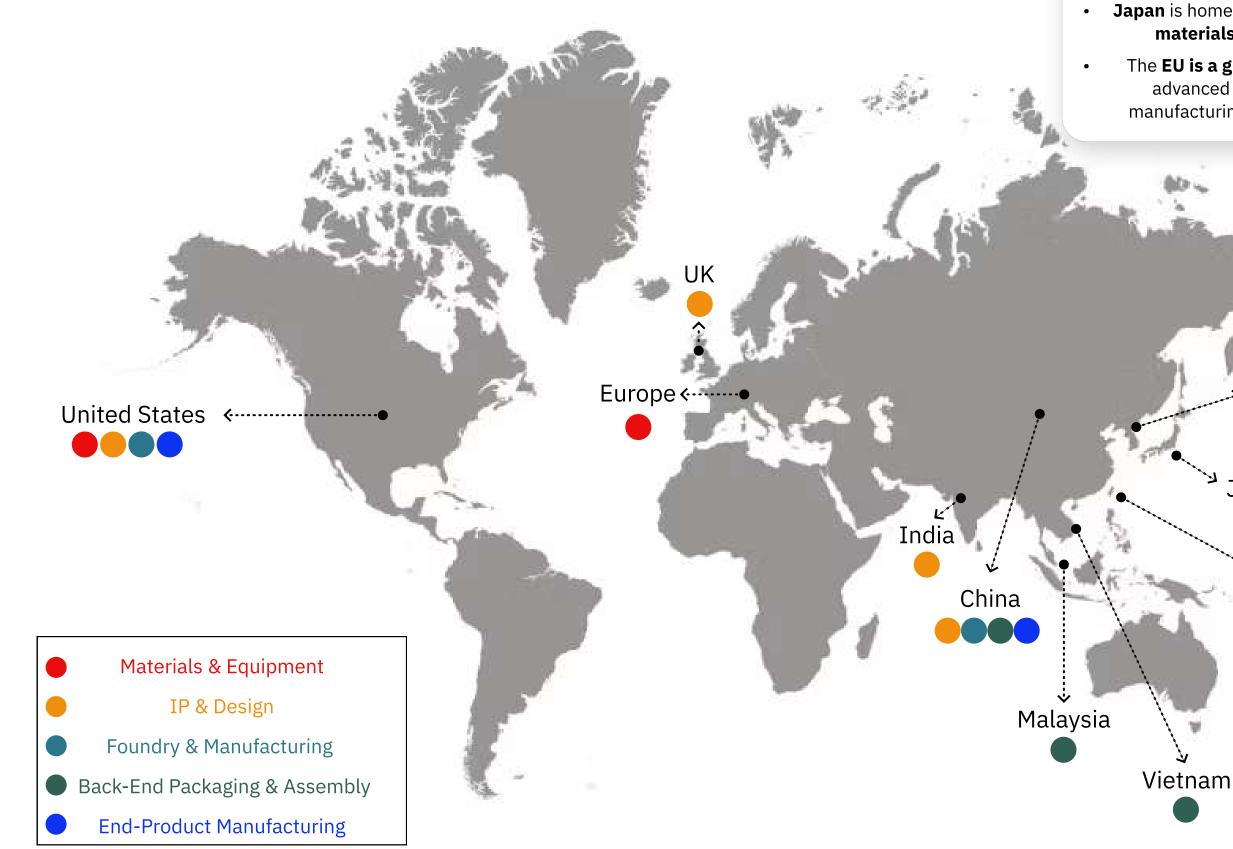
Mobile phone. electronic control unit (car)

Semiconductors, the world's fourth-mosttraded product, have one of the most complex and globally dispersed value chains.

The production process spans multiple stages, from raw material procurement to endproduct manufacturing, involving diverse players across different geographies.

Key Players in the Semiconductor Value Chain

Design (IP) Provides core chip designsEDA Enables chip design & simulationRaw Materials Supplies wafers & chemicals


IDM Designs & manufactures in-houseFoundrieEquipment Provides chip-making toolsAssembFabless Design Designs chips, outsources manufacturing

Foundries Fabricates semiconductor wafers Assembly, Testing, Packaging Packages & tests chips ufacturing

Source : Inc42, Quartr

Global Semiconductor Hubs: Key Players Across the Value Chain Materials & Equipment

Japan is home to many leading materials companies

The **EU is a global leader** in advanced **equipment** manufacturing, led by ASML

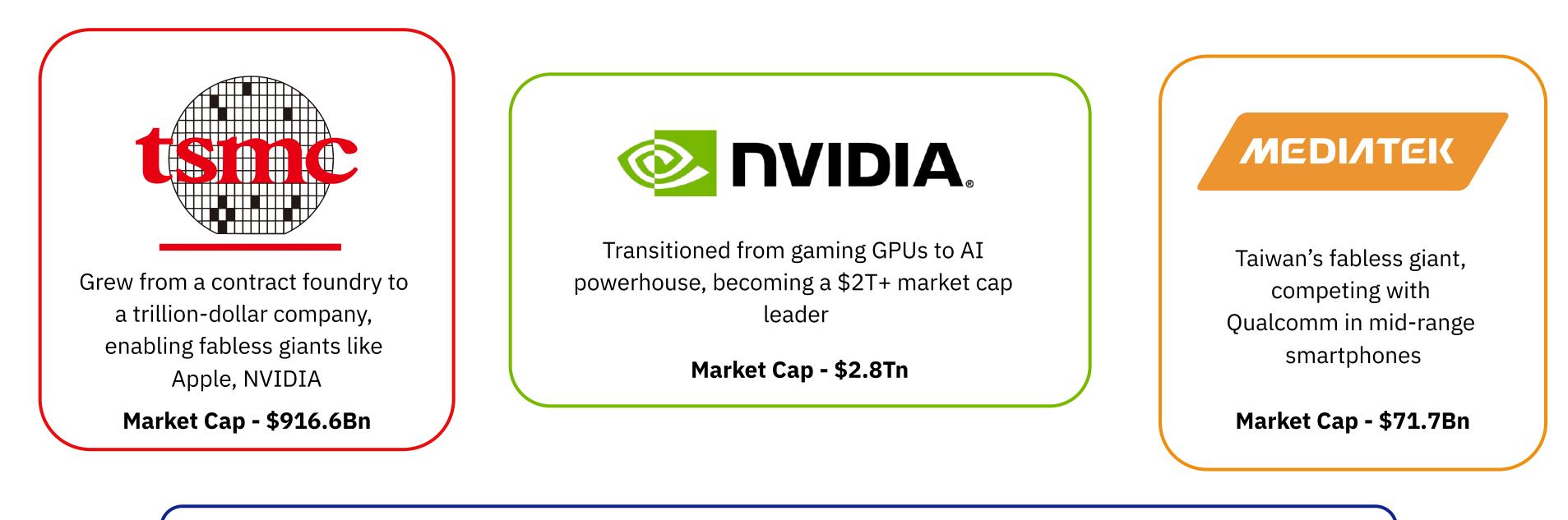
IP & Design

- US leads in semiconductor design, with USheadquartered companies holding 51% of the design market
- **ARM (UK) dominates chip architecture** licensing
- India contributes significantly to chip design, possessing nearly 20% of the global design workforce

Foundry & Manufacturing

- Taiwan (TSMC) produces over 50% of the world's chips and over 90% of advanced (below 10nm) chips
- The **EU is a global leader** in advanced **equipment** manufacturing, led by ASML

Back-End Packaging & Assembly


- Packaging, testing, and assembly are laborintensive and largely handled in Southeast Asia
- **China dominates this stage**, together with Taiwan hosts nearly 60% of global ATP capacity

End-Product Manufacturing

- Packaging, testing, and assembly are labor-• intensive and largely handled in Southeast Asia
- **China dominates this stage**, together with Taiwan hosts nearly 60% of global ATP capacity

⇒ South Korea Japan Taiwan

Movers & Shakers in Semiconductor Wealth Creation

Monopoly over EUV lithography, critical to advanced chipmaking

Market Cap - \$286.3Bn

Understanding Manufacturing Models: What's Right for Indian Startups?

Owns the semiconductor product design & branding but often outsources fabrication to a foundry	Qualcomm (Snapd AMD (Ryzer
Designs & manufactures semiconductors that other brands customize & sell under their own name	MediaTek (chipse smartphones & Novatek
Provides end-to-end electronics assembly & testing, including chip integration into devices	Foxconn, Jabil (assembly & pack
Focuses on semiconductor assembly, PCB mounting & chip-on-board manufacturing	Wistron, Pegat
Purely provides semiconductor fabrication services, often working with fabless OEMs & chip designers	TSMC, GlobalFou
	branding but often outsources fabrication to a foundry Designs & manufactures semiconductors that other brands customize & sell under their own name Provides end-to-end electronics assembly & testing, including chip integration into devices Focuses on semiconductor assembly, PCB mounting & chip-on-board manufacturing Purely provides semiconductor fabrication services, often working with fabless OEMs & chip

For Indian startups, focusing on a fabless chip design model (OEM/ODM) is the most viable & scalable path. With government support & a strong design talent pool, India can develop a robust semiconductor IP & design ecosystem before scaling to manufacturing partnerships in OSAT & ATMP

STRENGTHS

dragon), en)

sets for & IoT),

(Chip kaging

atron

undries

V Strong Semiconductor Design Talent

India contributes ~20% of the world's chip design workforce

Growing OSAT & ATMP Ecosystem

Companies like Tata, Micron, and Kaynes, are investing in advanced chip packaging & testing

Government Incentives
India has launched PLI & DLI schemes to boost
domestic chip design & manufacturing

CHALLENGES

X Lack of Advanced Foundries

India lacks cutting-edge semiconductor fabs (TSMC, Samsung dominate)

X Supply Chain Dependencies

Heavy reliance on imports for wafers, photomasks, specialty gases & chemicals

X Capital-Intensive Industry

Semiconductor fabs require multi-billion-dollar

investments

What's Driving Semiconductor **Demand?** (1/2)

Industrial & Automation

Growing adoption of robotics, smart manufacturing, and IoT is driving demand for semiconductors, enabling precision control and realtime monitoring

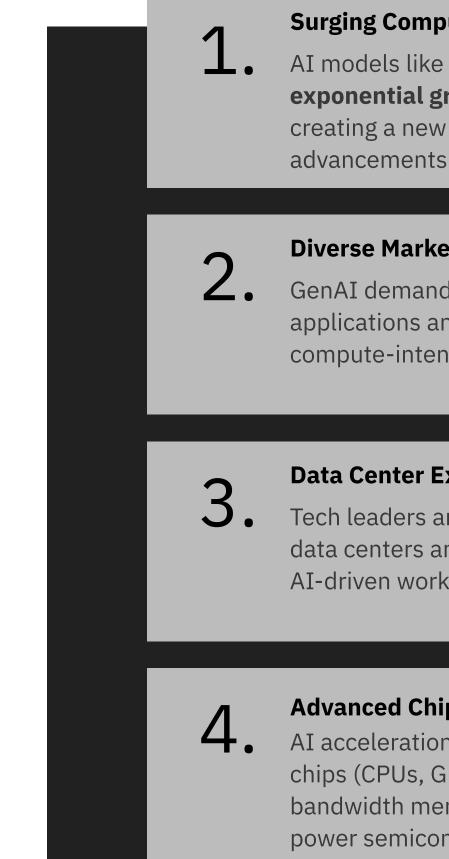
Telecom & 5G

Expansion of 5G networks and high-speed connectivity fuels demand for secure, efficient semiconductor solutions

Automotive & EVs

Growth of electric vehicles (EVs) and ADAS requires advanced chips for safety, performance, and automation

Consumer Electronics


Growing popularity of consumer devices such as smartphones, tablets, and gaming consoles drives the demand for semiconductors

What's Driving Semiconductor **Demand?** (2/2)

Generative AI & Computing

The rapid rise of generative AI (GenAI) and computing is driving an unprecedented surge in semiconductor demand, pushing the industry to develop more powerful and efficient chips

Surging Computational Needs

AI models like ChatGPT and Sora are fueling exponential growth in computational power, creating a new **S-curve** for semiconductor

Diverse Market Applications

GenAI demand is split, with **70% from B2C** applications and **30% from B2B**, spanning both compute-intensive training

Data Center Expansion

Tech leaders are making massive investments in data centers and semiconductor fabs to support AI-driven workloads

Advanced Chip Requirements

AI acceleration is increasing demand for logic chips (CPUs, GPUs, AI accelerators), highbandwidth memory (HBM, DDR), NAND storage, power semiconductors, and optical transceivers

Geopolitics in Semiconductors: The New Tech Battleground

Semiconductors tiny chips that power everything from smartphones to fighter jets — are at the heart of global geopolitics. Countries and companies are fighting for dominance in this critical technology because control over semiconductors means control over the future of artificial intelligence, 5G, defense systems, and advanced computing

Powerhouses

United States Design & advanced R&D **Taiwan** Cutting-edge manufacturing 🍋 China Largest consumer, but lags in advanced chipmaking 💽 South Korea Memory chip dominance

🖲 Japan & 🔝 Europe

Critical materials & equipment

2

The US-China Tech War

Export Bans: US bans China from accessing advanced chips & chip-making tools

China's Response: Investing billions but struggles with cutting-edge fabrication

Tech Alliances: US, Japan, South Korea, Netherlands work to limit China's access

3 **Taiwan: The**

Semiconductor **Flashpoint**

TSMC produces ~90% of the world's most advanced chips

China's Interest: Taiwan's semiconductor dominance is a strategic reason for tensions

US Response: Strengthening military ties with Taiwan to protect chip supply chains

CHIPS Act – \$52B investment in US chip manufacturing **EU Chips Act** – Aims for 20% of global chip production by 2030. **India's Play:** Incentives to attract semiconductor manufacturing.

Fragile Supply Chains & Self-Sufficiency Push

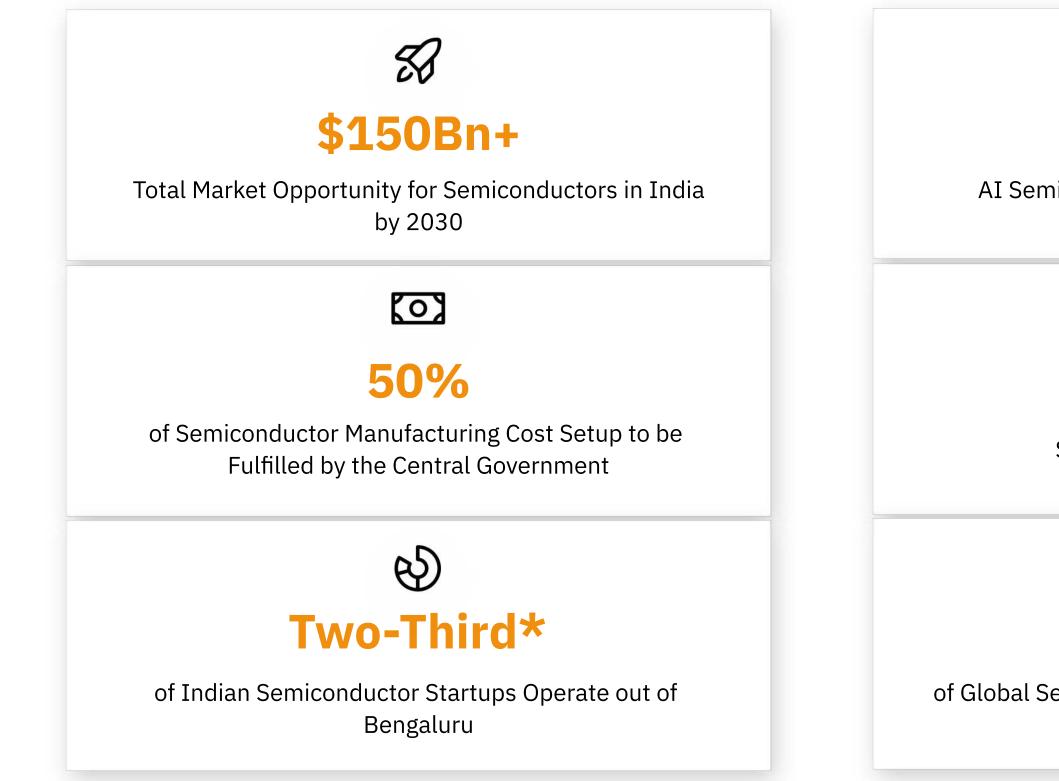
Global Risks: Trade wars, conflicts threaten supply chains.

Policy Moves:

Future: Tech Decoupling & Alliances

5

US & Allies: "Chip 4" (US, Taiwan, Japan, South Korea) to control semiconductor tech


China's Strategy:

Self-reliance, aggressive R&D investment

The Next Decade:

A race for semiconductor independence will reshape geopolitics

India's Semiconductor Moment: The Opportunity Unfolding

*This is an approximate value, the exact share of Bengaluru in total semiconductor startups is about 64%

[]] \$21Bn+

AI Semiconductor Market Opportunity in India by 2030

臣 100+

Semiconductor Startups in India

of Global Semiconductor Integrated Circuit (IC) Design Workforce is from India

India's Semiconductor Moment: Can It Build the Next Chip Powerhouse?

Government Policy: A Strategic Push	India Semiconductor Mission (ISM): Launched with a \$10Bn incentive package to attract global players	In Encou in c	esign-Linked centive (DLI) Scheme: trages innovation chip design by rting startups like	D Focus localiz gases lev
- Fush	and develop domestic capabilities		nkhya Labs and semi Technologies	lev
Underlying Trends: Driving Demand	electronics and semiconductors in India is driven by rising incomes, increasing digital adoption, and a large domestic market projected to		The transfor automotive in Electric Vehic autonomous driv surge in semico	dustry towa cles (EVs) a ing is leadi
Key Enablers for India's Semiconductor Ambition	Participation of Large The entry of large Indian cor Tata Group into semiconduct provides momentum	nglomerate or manufac	s like Ir turing Str	ina +1: idia's rategic itioning

Ecosystem Development:

us on supply chain lization (chemicals, es, equipment) and everaging design expertise

State-Level Support:

Gujarat emerging as a hub due to proactive policies and robust infrastructure

^tthe wards **) and ding to a demand**

Surge in Design Startups: India now has 100+ semiconductor design startups, growing 2.4x since 2014, with continued momentum expected.

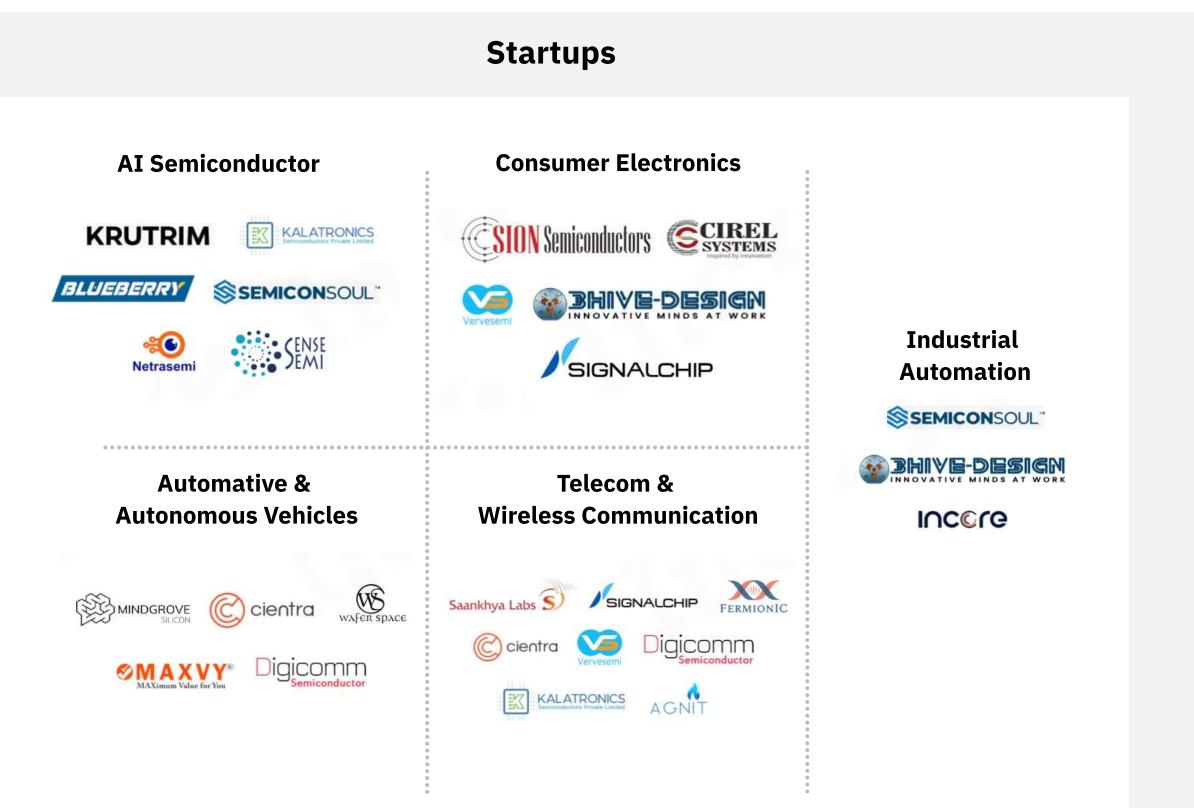
Geopolitical considerations and concerns about supply chain vulnerabilities in East Asia are prompting companies and policymakers to actively seek alternative manufacturing locations like India

India's Semiconductor Moment: With \$18 billion invested across five projects, India's semiconductor ambitions are taking shape

Company	Investment	Туре
Tata Electronics (with PSMC, Taiwan)	\$11Bn	Foundry
Tata Electronics	\$3.3Bn	OSAT (Outsourced Semiconductor Assembly and Test)
Micron Technology	\$2.8Bn	ATMP (Assembly, Testing, Marking, and Packaging)
CG Power (With Renesas, Japan and Stars Microelectronics, Thailand)	\$0.9Bn	OSAT
Kaynes (with Globetronics, Malaysia and Aptos, Taiwan)	\$0.4Bn	OSAT

basic roots consulting

Source: PIB, Company, Media articles (Economic Times, Business Standard), Jefferies


India's Emerging Semiconductor Innovators

	AGNIT	IUC©LG	MINDGROVE	cientra	Saankhya Labs S
Incorporated In	2019	2018	2021	2017	2007
Location	Bengaluru	Chennai	Chennai	Bengaluru	Bengaluru
Target Industry	Telecommunication, Drone, Power Electronics	Automotive, Storage, Security, Edge AI	Security, Smart Watch, Thermal Printer, Biometric Module	Automotive, Telecommunication, Consumer Electronics	Satellite and 5G communications
Description	Specialising in GaN materials and electronic components for radio- frequency applications	Processor design company, is revolutionising industries with its innovative RISC-V- based solutions.	Mindgrove designs, scalable, and reliable System-on-Chips (SoCS) in India	Cientra is an end-to-end semiconductor solutions provider specialising in VLSI, ASIC, FPGA, and system-on-chip (SoC) design	India's earliest fabless semiconductor companies and has pioneered innovations in satellite communication and 5G new Radio
Funding Investors	\$4.87Mn T Sone4 Zephyr Peacock	\$3Mn	\$10.4Mn PECIALE INVEST Ventures Whiteboard	NA (Acquired) accenture	\$27.9Mn (Acquired)

Key Enablers of Semiconductor Ecosystem in India

The current semiconductor ecosystem in India is largely dominated by global MNCs and Indian corporates

basic roots consulting MAKING BUSINESSES

Global MNCs & Indian Corporates

Funding Landscape for Indian Companies

Sub sectors considered in the above data - Sensors | Embedded Systems | Display Technology, Services, & Manufacturing | Electronics Manufacturing, Design & Equipment | Digital, Printed, Analog & Mixed Signal ICs | Semiconductor Design, Manufacturing, Equipments, IP and Diversified Semiconductors

Average Acquisition Price

A Silicon Future: India's Rise in the Global Semiconductor Arena

India is no longer just a consumer of semiconductors but is actively shaping up to be a global hub for chip design, manufacturing, and packaging, backed by robust incentives, partnerships, and long-term vision

Strengthening Domestic Fab Capabilities

- **\$10Bn incentives** driving domestic semiconductor manufacturing
- **\$18Bn+ investments** underway, incl. Tata-**PSMC's \$11Bn fab** (28-110nm chips)
- Govt covers up to 70% of fab costs, attracting global players

Expanding Design & IP Portfolio

- 20% of global chip design workforce based in India
- **DLI & C2S programs** supporting domestic chip design
- **25+ firms** approved for semiconductor design incentives
- Push towards owning chip **IP** instead of just design services

Global Collaborations Driving Growth

- Partnerships with **PSMC** (Taiwan), Renesas (Japan), Micron (USA), Stars Micro (Thailand).
- **US-India iCET & supply** chain MoUs enabling
- India securing global suppliers for raw materials & equipment.

knowledge transfer.

India's Market Potential is Huge

- **Electronics market to hit \$500Bn by FY31**, chip demand **\$109Bn by 2030**
- Targeting 10% of the global semiconductor market by 2030
- Despite **supply chain &** talent gaps, strong policies + cost benefits = **high** investor confidence.
- Potential to **replicate auto** industry success

THANK YOU

Basic Roots Consulting | teambrc@basicroots.in